Topological simplification problems

Ulrich Bauer

IST Austria

July 2, 2012

ATMCS 5, Edinburgh

Joint work with:
Carsten Lange, Max Wardetzky
Nina Amenta, Dominique Attali, Olivier Devillers, Marc Glisse, André Lieutier
Topological denoising of a function

Noise (even small) can create lots of critical points

Topological denoising by simplification of critical set:
 ▶ removing critical points caused by noise

Problem

Given a function f and $\delta > 0$, find a function f_δ that:

▶ minimizes number of critical points
▶ stays close to input function: $\|f_\delta - f\|_\infty \leq \delta$
Persistence diagrams [Cohen-Steiner et al., 2005]
Stability of persistence diagrams

Theorem (Cohen-Steiner et al., 2005)

Let \(\|f - g\|_\infty \leq \delta \).

- The persistence pairs of \(f \) that have persistence > \(2\delta \) can be mapped injectively to the persistence pairs of \(g \).

- Corresponding points \(p_f, p_g \) in the persistence diagrams have distance \(\|p_f - p_g\|_\infty \leq \delta \).
Corollary

Let f be a discrete Morse function and let $\delta > 0$.

Then for every function f_δ with $\|f_\delta - f\|_\infty \leq \delta$ we have:

$$\# \text{ critical points of } f_\delta \geq \# \text{ critical points of } f \text{ with persistence } > 2\delta.$$
Side-effects of elimination

Idea for simplifying critical points [Edelsbrunner et al. 2006, Attali et al. 2009]:

- remove all persistence pairs of \(f \) with persistence \(\leq 2\delta \)
- leave all other persistence pairs unmodified

For an optimal solution, we must allow the critical values to change!
Interlude: discrete Morse theory

Since Vidit Nanda’s talk today was canceled... What you need to know about discrete Morse theory for this talk:

- it’s a discrete version of Morse theory for cell complexes
- there are discrete notions of gradient vector fields and critical points
- Morse functions are generic, nondegenerate functions (isolated critical points)
- discrete vector field: set of inequality constraints on function values
- homotopy type of sublevel sets changes only at critical values
Canceling critical points of a gradient field
Canceling critical points of a gradient field
Persistence pairs and Morse cancellations

Theorem (B., Lange, Wardetzky, 2011)

Let f be an excellent discrete Morse function on a surface (distinct critical values) with gradient field V. Any persistence pair (σ, τ) can be canceled in V after all persistence pairs $(\tilde{\sigma}, \tilde{\tau})$ with

$$f(\sigma) < f(\tilde{\sigma}) < f(\tilde{\tau}) < f(\tau)$$

have been canceled.

Corollary

On a surface, it is possible to cancel just the persistence pairs with persistence $\leq 2\delta$ (without canceling the other pairs).

Does not hold in higher dimensions!
Canceling critical points of a function
Degenerate functions

After cancelation, function is no longer Morse

- **pseudo-Morse**: replace strict inequalities by weak ones
 - f is consistent with V: if σ is facet of τ,
 - $(\sigma, \tau) \notin V \Rightarrow f(\sigma) \leq f(\tau)$
 - $(\sigma, \tau) \in V \Rightarrow f(\sigma) \geq f(\tau)$
 - closure of the set of discrete Morse functions

- Gradient vector field is no longer unique in general
Symbolic perturbation

- Use infinitesimal perturbations to resolve degeneracies

Let f pseudo-Morse, g excellent Morse (distinct critical values), both consistent with gradient vector field V.

- For any $\epsilon > 0$,

 $$f_\epsilon = f + \epsilon g$$

 is an excellent Morse function consistent with V

Assume additionally that the order induced by g

extends the order induced by f:

$$g(\sigma) < g(\tau) \Rightarrow f(\sigma) \leq f(\tau)$$

- f_ϵ induces the same order as g:

 $$g(\sigma) < g(\tau) \Leftrightarrow f_\epsilon(\sigma) < f_\epsilon(\tau)$$

- the persistence pairs of f_ϵ are the persistence pairs of g

Most important statements allow passing to the limit $\epsilon \to 0$!
Optimal topological simplification

Theorem (B., Lange, Wardetzky, 2011)

Let f be a pseudo-Morse function on a surface and let $\delta > 0$. Let f_δ be obtained from f by canceling all persistence pairs with persistence $\leq 2\delta$. Then

$$\|f_\delta - f\|_\infty \leq \delta.$$

I.e., f_δ achieves the lower bound on the number of critical points.

- Does not hold for non-manifold 2-complexes or higher dimensions (in general, simplification is NP-hard)
- Solution can be found in linear time after computation of persistence pairs
Recall: simplified vector field V_δ imposes inequalities on simplified function consistent with V_δ

$\|f_\delta - f\|_\infty \leq \delta$: another set of linear inequalities

- defines convex polytope of solutions:
 any function g consistent with V_δ and $\|g - f\|_\infty \leq \delta$ is a solution

- find the “best” solution using your favorite energy functional
Removing local extrema from 3D data

In 3D:

- simplifying critical points is hard
- simplifying only extrema is easy
Removing local extrema from 3D data

In 3D:

- simplifying critical points is hard
- simplifying only extrema is easy
Sublevel set simplification

Let \(F_{\leq t} = f^{-1}(-\infty, t] \) denote the \(t \)-sublevel set of \(f \).

Problem

Given a PL function \(f : \Omega \subset \mathbb{R}^3 \to \mathbb{R} \) and \(t \in \mathbb{R}, \delta > 0 \), find a PL function \(g \) with \(\|g - f\|_{\infty} \leq \delta \) minimizing \(\beta_(G_{\leq t}) \).*

Let \(K = F_{\leq t+\delta}, L = F_{\leq t-\delta} \).

- For any \(g \), we have \(L \subset G_{\leq t} \subset K \).
- For any \(X \) with \(L \subset X \subset K \), there is \(g \) with \(G_{\leq t} = X \).

Thus we are looking for \(X \) with \(L \subset X \subset K \) minimizing \(\beta_*(X) \).
Homological factorization

Problem

Given a simplicial pair \((K, L)\), find \(X\) with \(L \subset X \subset K\) such that \(H_*(L \hookrightarrow X)\) is surjective and \(H_*(X \hookrightarrow K)\) is injective.

Such an \(X\) is called a homological factorization of \((K, L)\).

- If \(L \subset X \subset K\) then \(\beta_*(X) \geq \text{rank } H_*(L \hookrightarrow K)\)
- in \(\mathbb{R}^3\): equality iff \(X\) is a homological factorization

homological factorizations do not always exist

a homological factorization may exist, but not as a subcomplex of \(K\)
Homological factorizability in \mathbb{R}^3 is NP-complete

Theorem (Attali, Lieutier; 2010)

Deciding whether (K, L) has a homological factorization as a subcomplex is NP-complete.

This holds even for complexes K embeddable in \mathbb{R}^3.

Corollary

Sublevel set simplification in \mathbb{R}^3 is NP-hard.

Idea of proof: reduction from 3-SAT

- given a 3-SAT instance, construct a simplicial pair (K, L) with trivial persistent homology group $H_\ast(L \hookrightarrow K)$
- X is homological factorization $\iff X$ is acyclic, $L \subset X \subset K$
Reduction from 3-SAT: the variable gadget

- red: contained in L, blue: $K \setminus L$
- X can contain only one of the edges $True_i, False_i$
- edges $True_i, False_i$ correspond to truth assignment of variable x_i
Reduction from 3-SAT: the clause gadget

- red: contained in L
- blue: $K \setminus L$
- X must contain one of the edges a, b, c

- For every clause (e.g., $(x_1 \lor \neg x_2 \lor x_4)$):
 - identify a, b, c with edges of variable gadgets corresponding to the literals (True$_1$, False$_2$, True$_4$)
- We can transform a homological factorization of (K, L) into a satisfying assignment and vice versa
Simplification of level sets

Theorem

Level set simplification in \mathbb{R}^3 is NP-hard.

Idea of proof:

Assume $K = F_{\leq t+\delta}$, $L = F_{\leq t-\delta}$. Let g be a t-level set simplification of f (a function g minimizing $\beta_*(G_{=t})$). Then $G_{\leq t}$ is a homological factorization of (K, L), if one exists.

- $\beta_*(G_{=t}) = \beta_*(G_{<t}) + \beta_*(G_{\leq t})$
- g may be assumed to have regular value t. Hence $\beta_*(G_{=t}) = 2\beta_*(G_{\leq t})$
- If a homological factorization exists, then the lower bound on $\beta_*(G_{\leq t})$ can be achieved
- since g minimizes $\beta_*(G_{=t}) = 2\beta_*(G_{\leq t})$, it achieves this bound
Thanks for your attention!