ANALYSIS, COMBINATORICS

COMPUTATION

EULER NUMBER \(X \)

\[V - E + F = 2 \quad (\text{on sphere}) \]

\[= 2 - 2g \quad (\text{on surface of genus } g) \]

HIGHER-DIMS

\[\sum_{2=0}^{n} (-1)^2 c^2 = \sum_{2=0}^{n} (-1)^2 r^2 = X \]

\(c^2 = \) number of 2-cells

COMBINATORIAL

\(r^2 = \text{dim } H^2 \)

\(H^2 = (C^0)\text{-Homology group} \)

TOPOLOGICAL

IN VARIANTS

\[\pi_1 \]
INTEGRAL FORMULA

RIEMANNIAN METRIC

dim 2: GAUSS (SCALAR) CURVATURE κ

$\kappa = \frac{1}{2\pi} \int \kappa$

(ALSO IN HIGHER-DIM)

DIFFERENTIAL FORMULA

Ω^2 DIFFERENTIAL 2-FORMS

$d: \Omega^2 \rightarrow \Omega^{p+2}$ EXTERIOR DERIVATIVE

DE RHAM COMPLEX

$0 \rightarrow \Omega^0 \rightarrow \Omega^1 \rightarrow \Omega^2 \rightarrow \cdots \rightarrow \Omega^n \rightarrow 0$

$H^2 =$ COHOMOLOGY OF THIS COMPLEX

HODGE THEORY RIEMANNIAN METRIC

$d^* =$ ADJOINT OF d

HODGE LAPLACIAN $\Delta = d d^* + d^* d$

$\Delta \phi = 0$ HARMONIC 2-FORM \mathcal{H}^2

HODGE THEOREM $\mathcal{H}^2 \cong \mathcal{H}^2$

$\Rightarrow \kappa = \sum (-1)^p \dim \mathcal{H}^p$
LAPLACE TYPE OPERATORS

2^{ND} ORDER ELLIPTIC

in \(\mathbb{R}^n \)

\(- \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} \)

HODGE \(\Delta \)

DIRAC TYPE OPERATORS

1^{ST} ORDER ELLIPTIC (SYSTEMS)

in \(\mathbb{R}^n \)

\(- \sum_{i=1}^{n} A_i \frac{\partial}{\partial x_i} \)

\(A_i = -1 \)

\(A_i A_j = -A_j A_i \quad (c+i) \)

SQUARE-ROOT OF

LAPLACE-TYPE

dim 1

\[\frac{\partial}{\partial x} \]

dim 2

CAUCHY-RIEMANN

\[\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \]

ON DIFFERENTIAL FORMS

\[\Omega = \Theta \Omega^2 \]

SPINORS

\[(d+d^*) \]

\[(d+d^*)^2 = dd^* + d^*d \quad \text{HODGE} \Delta \]

\[(d^*d)^2 = 0 \]
INDEX THEORY

\[d^{+}d^{'} = \Omega^{ev} \rightarrow \Omega^{odd} \]

INDEX = dim \(\Omega^{ev} \) - dim \(\Omega^{odd} \) = \(\chi \)

SIMPLEST EXAMPLE OF AN INDEX THEOREM (GIVEN BY INTEGRAL FORMULA)

BUT ATYPICAL: VERY ROBUST

COMBINATORIAL VERSION PRECISE

AT ALL LEVELS

IN GENERAL

1) FOR DIRAC-TYPE OPERATOR \(D \)

\(\mathcal{N}^{+}, \mathcal{N}^{-} \) (NULL-SPACES OF \(D^{+}D \))

HAVE DIMS WHICH CAN "JUMP"

THOUGH DIFFERENT (INDEX) IS TOPOLOGICAL INVARIANT.

2) COMBINATORIAL APPROXIMATIONS TO \(D \) "NOT PRECISE"
Examples of (4)

a) \[\text{dim} \ 2 \quad \text{SURFACE} \quad \text{CONFORMAL (COMPLEX)} \]
\[d = 2 + 3 = \left(\frac{3}{2}, \frac{3}{2} \right) \]

COMPLEX DE RHAM
\[\Omega^3 \rightarrow \Omega^0 \]
\[H^0 = \text{CONSTANTS} \quad H^1 = \text{Holomorphic DIFFS} \]
\[\text{index} = 1 - q \quad \left(\geq \frac{1}{2}q \right) \]

But what is combinatorial version?

b) \(\text{dim} \ 4 \quad \text{(ORIENTED)} \)
\[H^2 \quad \text{HAS QUADRATIC FORM} \]
(\(H^2 \) "INTERSECTION FORM")

\[\text{METRIC} \]
\[H^2 = \mathfrak{h}^2 = H^2_+ + \Theta H_- \]
\[\times \phi = -\phi \quad \times \phi = -\phi \]

\[\text{Signature} \quad \sigma = \text{dim} H^2_+ - \text{dim} H^2_- \]

\[\text{TOPOLOGICAL INVARIANT} \]
\[\text{INTEGRAL FORMULA} = \frac{1}{3} \sqrt{p_3} \]

(PONTJAGIN FORM)
I can be viewed as index of operator $\alpha + \alpha^*: \Omega^x \to \Omega^y$ where $\Omega = \Omega^x \cap \Omega^y$ is decomposition given by I

Note $+$ maps $\Omega^0 \leftrightarrow \Omega^y$

$\Omega^1 \leftrightarrow \Omega^3$

And decomposes Ω^2 into dual dual

\Rightarrow Index $=$ Signature

But finding combinatorial version runs into problems

Cellular \to Dual Cells

Refinement

Infinite regression!
COMBINATORIAL INDEX PROBLEM

\[D : E \rightarrow F \quad \text{ELLiptic (Dirac-\text{TYPE}) DIFF. OPERATOR} \]

WITH its ADJOINT \(D^* \)

HAD A PRECISE COMBINATORIAL VERSION AT ALL LEVELS

\[D_n : E_n \rightarrow F_n \]

THEN

\[\text{index } D_n = \dim E_n - \dim F_n \quad \text{(because we are in finite dim)} \]

AS \(n \to \infty \) WE WANT TO RECOVER DIFF OPERATOR STORY

SO \(\text{INDEX } D_n \rightarrow \text{INDEX } D \)

IT SEEMS WE NEED TO FEED THE ANSWER INTO THE COMB. APPROX
BREAKING THE SYMMETRY

Given \(D : E \rightarrow f \) elliptic

Perhaps we can find finite approximations \(D_n \rightarrow D_n' \) to

\(D \rightarrow D^* \) which are not adjoints

with \(D_n \rightarrow D \rightarrow D_n' \rightarrow D^* \)

Then we need to study how

\((D_n^* D_n) \rightarrow D^* D \)

on how its eigenvalues behave

as \(n \rightarrow \infty \).

KEY OBSERVATION "physics"

Focus not on \(0 \)-eigenvalue of \(D_n \)

but on low-lying eigenvalues

those which \(\rightarrow 0 \) as \(n \rightarrow \infty \)

J. PACHOS (LEEDS)
Computational Question

How do we identify the "low-lying" eigenvalues in some precise way?

Note for Dirac-type operators arising in Riemannian geometry:
The key data (metric + connection) \[\Rightarrow\] curvature (of base + bundle)

Perhaps we need an approximation so that all curvatures over cells are "small"?
(1) **EXAMPLE OF "JUMPS"**

\[\dim 2 \text{ Complex Riemann Surface } X \]

Holomorphic Line-Bundle \(L \)

\[\dim H^0(X,L) \text{ can vary as complex moduli of } L \text{ vary } (g \geq 1) \]

But \[\dim H^0 - \dim H^2 \text{ topological } = 1 + \deg(L) \]

Not here variation is bounded

In **higher-dims** is unbounded

Question how will this affect

Combinatorial approximations?
EIGENVALUES & CURVATURE

FOR LAPLACE-BELTRAMI OPERATOR
(= HODGE ON SCALAR FUNCTIONS)

ESTIMATES ON FIRST NON-ZERO
EIGENVALUE λ_1

CHEEGER ISOFLPERIMETRIC CONSTANT
M. COMPACT RIEMANNIAN

\[\frac{\int E}{\min \left\{ V(A), V(B) \right\} } \]

\[E \subset M, \dim E = n-1 \]

\[V = n\text{-Volume} \]

\[S = (n-1)\text{-volume "area"} \]

CHEEGER INEQUALITY

\[\lambda_1(M) \geq \frac{\lambda^2(M)}{4} \]

"SHARP"
If Riemannian curvature bounded below \(- (n-1) \alpha^2 \) \((\alpha > 0)\), then

\[\lambda_1(M) \leq 2 \alpha (n-1) \kappa(M) + \text{log}^2(M) \]

Buser inequality

Story more complicated for other geometric operators

Probably large literature ??
Focus on key example of signature of 4-manifold

[Note results of Belfand-Macpherson]

Steps

1) Set up comb. approximations Δ_N, Δ'_N

2) Define "low-lying" eigenvalues of these

3) Use curvature estimates to show these eigenvalues are well-defined for large N

6) Conclude

signature = $R_N - R'_N$

R, R' number of low-lying eigenvalues of Δ_N, Δ'_N

Hope to get useful formula!!